南宁家教-高中数学三角函数知识点

发表日期:2023-03-26 17:40:11 | 作者: 作者: | 电话:156-7892-4125 | 累计浏览:0

南宁家教老师:

数学对于大多数高中生而言都是很头疼的一个科目,由于高中数学的难度加大,让很多学生对函数不能很好的理解,对于函数的知识点也吃不透,导致数学成绩一再下降,接下来南宁家教小编就为大家来详细的讲解一下高中数学三角函数知识点,一起随小编来看看吧。

高中数学三角函数知识点

三角函数

周期函数:一般地,对于函数f(x),如果存在一个不为0的常数T使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期三角函数属于高中数学中的重点内容,在高考理科数学中更是占据很重要的位置。

三角函数的图像:可以利用三角函数线用几何法作出,在精确度要求不高的情况下,常用五点法作图,要特别注意“五点”的取法。

三角函数的定义域:三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用。

反三角函数主要是三个:

y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;

y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

三角函数其他公式

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π

/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

当x∈[—π/2,π/2]时,有arcsin(sinx)=x

当x∈[0,π],arccos(cosx)=x

x∈(—π/2,π/2),arctan(tanx)=x

x∈(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx类似

若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

三角函数与平面向量的综合问题

巧妙“转化”--把以“向量的数量积、平面向量共线、平面向量垂直”“向量的线性运算”形式出现的条件还其本来面目,转化为“对应坐标乘积之间的关系”;

巧挖“条件”--利用隐含条件”正弦函数、余弦函数、的有界性“,把不等式的恒成立问题转化为含参数ψ的方程,求出参数ψ的值,从而可求函数的解析式;

活用”性质“--活用正弦函数与余弦函数的单调性、对称性、周期性、奇偶性,以及整体换元思想,即可求其对称轴与单调区间。

见三角函数“对称”问题,启用图象特征代数关系:(A≠0)

函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;

函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;

同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

三角函数,平面向量,解三角形。三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

以上内容是南宁家教小编对高中数学三角函数知识点的总结,希望能给大家带来帮助。三角函数公式太多,学生们要掌握推导过程,并且要多做练习题,要先把基础的公式把握好,学习的时候要数形结合,这样才更直观,更容易理解。

南宁大学生家教,请家教的好帮手。

上一篇: 南宁家教-初中数学思维方法

下一篇: 南宁家教-地理必修一知识点总结